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Abstract

Benign prostatic hyperplasia (BPH) represents a pattern of non-malignant growth of prostatic fibromuscular stroma.
Metabolic disturbances such us pre-diabetes and metabolic syndrome may have a role in BPH pathophysiology. A
potential explanation for the above relationship involves the insulin-like growth factor (IGF) axis as well as IGF
binding proteins, (IGFBPs) of which the most abundant form is IGFBP-3. Therefore, the aim of the present study was
to investigate the association between intra-prostatic levels of IGF-1, IGF-2 as well as to evaluate the role of locally
expressed IGFBP-3 in BPH development in pre-diabetes. A total of 49 patients admitted to the Urology department of
a tertiary urban Greek hospital, for transurethral prostate resection, or prostatectomy and with pre-diabetes [impaired
fasting glucose (IFG) and impaired glucose tolerance (IGT) or both] were finally included. The majority of the sample
consisted of subjects with IGT (51.0%), followed by IFG and IGT (32.7%) and isolated IFG (16.3%). For all
participants a clinical examination was performed and blood samples were collected. In addition, total prostate (TP)
volume or transitional zone (TZ) volume were estimated by transrectal ultrasonography. The results of the
multivariate analysis regarding TP volume showed that higher PSA (p<0.001), larger waist circumference (p=0.007)
and higher IGFBP-3 expression levels (p<0.001) independently predicted higher TP volume. The results regarding
the volume of the TZ showed that higher PSA (p<0.001), larger waist circumference (p<0.001) and higher IGFBP-3
expression levels (p=0.024) were independently associated with higher TZ volume. Our findings show that intra-
prostatic levels of IGFBP-3, PSA and waist circumference, but not overall obesity, are positively associated with
prostate volume. IGFBP-3 seems to be a multifunctional protein, which can potentiate or inhibit IGF activity.
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Introduction

Benign prostatic hyperplasia (BPH) represents a pattern of
unregulated but non-malignant growth of prostatic
fibromuscular stroma [1]. Although there is evidence that
ageing and hormonal alterations are involved in growth of
stromal and epithelial components in the prostate and induction
of fibromuscular overgrowth, the pathogenesis of BPH remains
still unclear [2,3]. BPH pathogenesis seems to be multifactorial
and recent findings highlight the key role of metabolic
disturbances such us obesity, disturbances of glucose

homeostasis and metabolic syndrome (MS) in BPH
pathophysiology [2,3].

Metabolic syndrome (MS) is a clinical syndrome, easily
identified, that predisposes to an increased risk of developing
benign prostatic hypertrophy. Hamarsten et al. [4], have
reported that men with components of MS had significantly
larger prostate volumes and BPH growth rates. In this context
Nandeesha et al. [5], have also reported that fasting serum
insulin was significantly higher in men with BPH than in
controls without BPH and obesity, elevated fasting plasma
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glucose levels, diabetes, were risk factors for developing
benign prostatic hyperplasia [6].

Insulin resistance (IR), apart from changes in carbohydrate,
lipid, or protein metabolism, affectes growth, differentiation,
DNA synthesis, regulation of gene expression and BPH [7]. A
potential explanation for the association of BPH with
hyperinsulinemia, involves the insulin-like growth factor (IGF)
axis. IGF-1 and IGF-2 are peptides produced by prostatic cells,
critical in the regulation, development, and proliferation of
prostatic stroma cells and elevated serum concentrations of
insulin and IGF-1 have been associated with BPH [8,9].
Hyperinsulinemia further stimulates IGF-1 production by
upregulating growth hormone (GH) receptors in the liver [10]. It
is known that GH stimulates IGF production by the liver [10].

IGFs are transported in the circulation bound to their carrier
proteins; IGF binding proteins, (IGFBPs) of which the most
abundant form is IGFBP-3, which has also been associated
with prostatic growth and insulin [11,12]. However, data on the
association of IGFBP-3 and BPH development are conflicting
with some researchers to report that elevated IGFBP-3
concentrations correlate with increased BPH risk [3], whereas
others have reported an inverse correlation [13,14].

In the majority of studies examining the relationship of IGF
axis and various anthropometric variables with BPH, only
circulating levels of IGFs or IGFBPs, and not prostate tissue
levels were examined. However, local tissue expression of
IGFs and IGFBPs could be more important and accurate in
evaluating these associations, since the total circulating pool of
the above factors may not reflect intra-prostatic levels or
biological activity [15,16].

IR and obesity are part of the clinical entity characterized as
pre-diabetes [17] which represents a heterogeneous group of
metabolic defects preceding type 2 diabetes (T2D) [18].
Prediabetes encompasses impaired fasting glucose (IFG) and
impaired glucose tolerance (IGT) states, with both to be
characterized by IR [19]. In addition IGT has been reported to
be accompanied by higher IR levels than IGF [20] by some
researchers. Both IFG and IGT represent deranged glucose
homeostasis states that significantly increase risk of
progression to frank T2D especially when in coexistence [18].

The aim of the present study was to investigate the
association between intra-prostatic levels of IGF-1, IGF-2 and
BPH, as well as to evaluate the role of locally expressed
IGFBP-3 in BPH development in different states of pre-
diabetes.

Materials and Methods

Ethics statement
All participants gave written informed consent. The study

was approved by the ethics committee of the Tzanio General
Hospital of Piraeus, Greece and followed the ethical standards
of the Helsinki Declaration.

Patients admitted to the Urology department of a tertiary
urban Greek hospital, for transurethral prostate resection
(TURP), or prostatectomy comprised the initial study
population. Patients with a previous history of malignancy,
inflammatory disorders, prostate surgery, and diabetes were

excluded. Subjects treated with α-blockers, 5-a reductase
inhibitors and/or metformin were also excluded. A total of 49
patients with histologically proven BPH and not prostate
cancer, based on biopsy of prostate tissue removed during
these procedures, and with pre-diabetes (IGF, IGT, or both)
were finally included. Therefore all participants underwent a
75gr oral glucose tolerance test (OGTT) for determining
glucose tolerance status according to the criteria of the
American Diabetes Association and only individuals with pre-
diabetes were enrolled. IFG diagnosis was based on fasting
plasma glucose (FPG) value > 100 mg/dL and < 126 mg/dL.
Diagnosis of IGT was based on serum glucose concentration
2-h PG > 140 mg/dL and < 200 mg/dL.

For all participants the following parameters were determined
at baseline by trained interviewers: age, body mass index (BMI,
body weight kilograms divided by the square of height in
meters), waist to hip ratio (waist circumference divided by hip
circumference), systolic blood pressure (SBP) and diastolic
blood pressure (DBP), and MS status (according to the criteria
set by the National Cholesterol Education Program). In addition
the cumulative number of MS components was also
determined. Blood samples were drawn and biochemical
analyses including serum glucose, total cholesterol, low density
lipoprotein cholesterol (LDL-C), triglycerides, and high density
lipoprotein cholesterol (HDL-C). Total prostate specific antigen
(PSA) levels were also determined.

Total prostate (TP) volume or transitional zone (TZ) volume,
estimated by transrectal ultrasonography, and were used as
surrogate measures of degree of BPH. All patients underwent
transrectal ultrasound before operation for calculation of TP
and TZ volumes using the ellipsoid method. All TRUS were
performed by the same urologist. Intra-prostatic expression of
IGF-1, IGF-2, and IGFBP-3 were evaluated with RT-PCR as
described below.

RNA Extraction from Tissues
RNA from the tissues treated with Allprotect Tissue reagent

(QIAGEN, Cat. # 76405) was extracted with the use of the
QIAGEN AllPrep® DNA/RNA/Protein Mini kit (Cat. # 80004).
Briefly, approximately 20 mg of tissue was disrupted using the
mortar and pestle method described in the QIAGEN AllPrep®
DNA/RNA/Protein Mini kit handbook. Homogenization of the
disrupted tissue was obtained by the use of QIAshredder
homogenizer. Total RNA, DNA and protein was obtained as
described at the QIAGEN AllPrep® DNA/RNA/Protein Mini kit
handbook. The RNA elute (30 μl in total) was used for the real-
time PCR quantification of IGF-1, IGF-2 and IGFBP-3.

Real-Time PCR primers and probes
Primers specific for the amplification of each of the IGF-1,

IGF-2 and IGFBP-3 genes, as well as for the reference gene
β2-microglobulin were ordered for synthesis at TIB MOLBIOL.
Hybridization probes suitable for each gene were constructed
by TIB MOLBIOL. Forward primer for IGF-1: 5’-
TgTgTggAgACAggggCTT-3’, reverse primer for IGF-1: 5’-
TgCgTTCTTCAAATgTACTTCCTT-3’. Forward primer for
IGF-2: gACACCCTCCAgTTCgTCTg, reverse primer for IGF-2:
CggggTATCTggggAAgTTgT. Forward primer for IGFBP-3:
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TCTCAgAgCACAgATACCCAgAAC, reverse primer IGFBP-3:
ggAAgggCgACACTgCTTT-3’. Forward primer β2-
microglobulin: CCAgCAgAgAATggAAAgTC, reverse primer β2-
microglobulin: gATgCTgCTTACATgTCTCg. Hybridization
probes IGF-1: 5’-TgTATTgCgCACCCCTCAAgCC—FL and
CCAAgTCAgCTCgCTCTgTCCgT—PH. Hybridization probes
IGF-2: CCgTggCATgTTgAggAgTgCT—FL and
TTTCCgCAgCTgTgACCTggCC—PH. Hybridization probes
IGFBP-3: CTCAATgTgCTgAgTCCCAggggTgT—FL and
CACATTCCCAACTgTgACAAgAAgggA—PH. Hybridization
probes β2-microglobulin:
TTCTTCAgTAAgTCAACTTCAATgTCggA—FL and
ATgAAACCCAgACACATAgCAATTCAg—PH.

Real-Time PCR conditions
For each reaction, the following PCR mix was prepared: 7.9

μl dH2O, 1.3 μl Mn(OAc)2 (3.25 mM), forward and reverse
primers 0.2 μl (0.2 μM), 0.2 μl (0.1 μM) of each probe and 7.5
μl LightCycler RNA Master HybProbe (Cat. # 03018954001).
17.5 μl of the pcr mix and 2.5 μl of RNA was added into a glass
capillary to a total volume of 20 μl. Briefly, the One-Step RT
PCR conditions used for IGF-1, IGF-2 and IGFBP-3 were the
following: RT (20 min, 61°C), Initial Denaturation (1 min, 95
°C), amplification and quantification program (95 °C, 3 sec; 48
°C, 12 sec; 72° C, 10 sec; these steps were repeated for 50
cycles), melting program (95° C, 10 sec; 45 °C, 30 sec;85 °C, 0
sec) and cooling to 40 °C. For the β2-microglobulin One-Step
Real-Time PCR the following conditions were used: RT (20
min, 61°C), Initial Denaturation (1.0 min, 95 °C), for the PCR
(95 °C, 3 sec; 48 °C, 12 sec; 72 °C, 10 sec; these steps were
repeated for 50 cycles), melting program (95 °C, 0sec; 46 °C,
30 sec; 80 °C, 0 sec) and cooling to 40 °C. The experiment
was repeated twice using the ROCHE LightCycler 1.5
instrument.

Quantification values
The relative gene expression was estimated by incorporating

the crossing point of each sample for each of IGF-1, IGF-2 and
IGFBP-3, as well as the crossing point for β2-microglobulin to
the following formula: 2(ΔCt sample-ΔCt calibrator). All real-
time PCR expression data are presented as arbitrary units (AU)
[21,22].

Statistical analysis
For the evaluation of the factors associated with total

prostate volume, as well as transitional zone volume, a
standard two-step approach was followed: univariate and
multivariate analysis. At the univariate analysis, parametric
tests were appropriately implemented after the log-
transformation of total prostate volume and the volume of the
transitional zone, given that the log-transformed volumes
followed the normal distribution (as attested by the Shapiro-
Wilk test).

The factors whose associations with TP and TZ volume were
examined comprised the following: age, BMI, waist
circumference, hip circumference, WHR, subclassification of
pre-diabetes (IFG, IGT, IFG+IGT), IGF-1 levels, IGF-2 levels,

IGFBP-3 levels, PSA, MS, SBP, total cholesterol, LDL-C, HDL-
C, and triglycerides.

At the multivariate analysis, stepwise linear regression was
performed. As appropriate, factors proven significant at the
univariate analysis were tested in the stepwise multivariate
model as independent variables; a subset of them (i.e., those
with p<0.05) were appropriately retained during the stepwise
selection of variables. In case of conceptually intertwined
variables (such as waist circumference and WHR), alternative
models were constructed. Normality of the studentized
(jackknifed) residuals was verified using the Shapiro-Wilk test
for each model. Data are expressed as mean ± standard
deviation unless it is stated elsewhere. Statistical analysis was
performed using STATA 11.1 statistical software (Stata
Corporation, College Station, TX, USA).

Results

Study population
Table 1 presents the description of the study sample. The

mean age was 71.3±7.3 years (range: 62-88 years); the
majority (n=25) of the sample consisted of subjects with IGT
(51.0%), followed by IFG and IGT 16 (32.7%) and isolated IFG
8 (16.3%). 51% (n=25) of prediabetic subjects had MS
according to the NCEP ATP III criteria. The total prostate
volume was 66.9±37.2 cm3, whereas the transitional zone
volume was 44.8±31.1 cm3. Figure 1 graphically presents waist
circumference, total prostate size and PSA values in the study
sample.

Univariate Analysis
Table 2 presents the variables that were significantly

associated with TP volume and/or volume of the TZ at the
univariate analysis. Larger TP volume was associated with
higher PSA levels (r=+0.880, p<0.0001), higher IGF-2
expression levels (p=0.023), higher IGFBP-3 expression
(p<0.0001), older age (p=0.004, Figure 2a), larger BMI
(p=0.042), larger waist circumference (p=0.0001), hip
circumference (p=0.027), WHR (p<0.0001), higher LDL-C
(p=0.010) and triglyceride levels (p=0.016). TZ volume
presented with a similar pattern of associations, except for the
fact that age (p=0.400), BMI (p=0.118) and LDL-C (p=0.141)
did not reach significance.

Of note, IGF-1 expression levels were not associated with
TP volume (r=+0.189, p=0.198) or with TZ volume (r=-0.095,
p=0.583). Similarly, prediabetes subgroup was not associated
with TP volume (IFG group: 60.3±15.8 cm3, IGT group:
73.1±45.4 cm3, IFG+IGT group: 60.5±29.9 cm3; F=0.64,
p=0.530, ANOVA) or with TZ volume (IFG group: 30.1±16.0
cm3, IGT group: 50.8±38.3 cm3, IFG+IGT group 44.1.5±13.3
cm3, F=1.49, p=0.240, ANOVA).

Non-significant trends were observed towards a positive
association between MS and higher TP volume (76.0±45.1 cm3

for subjects with MS vs. 57.3±24.1 cm3 for those without,
p=0.079, Student’s t-test, Figure 2b), as well as higher TZ
volume (53.3.±37.3 cm3 for subjects with MS vs. 38.0±22.0 cm3

for those without, p=0.089, Student’s t-test). SBP was not
associated either with TP or with TZ volume. In accordance
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with the positive association between higher LDL-C and TP
volume, total cholesterol exhibited a trend of marginal
significance towards positive association with the latter (r=

Table 1. Demographic and clinical characteristics of the
study population.

 Value
Age (years) 71.7±7.3
Total prostate volume (cm3) 66.9±37.2
Transitional zone volume (cm3) 44.8±31.1
PSA (ng/mL) 4.36±2.92
IGF-1 (AU) 0.106±0.100
IGF-2 (AU) 0.064±0.124
IGFBP-3 (AU) 0.048±0.082
BMI (kg/m2) 27.0±2.3
Waist circumference (cm) 99.9±13.1
Hip circumference (cm) 98.2±10.9
WHR 1.02±0.05
Total Cholesterol (mg/dL) 195.3±42.9
HDL-C (mg/dL) 46.9±12.4
LDL-C (mg/dL) 126.7±47.9
Tg (mg/dL) 86.7±32.1
SBP (mmHg) 132.5±16.2
Metabolic syndrome (Yes) n (%) 25 (51.0)
IFG (Yes) n (%) 8 (16.3)
IGT (Yes) n (%) 25 (51.0)
IFG and IGT (Yes) n (%) 16 (32.7)

Note: PSA, prostate specific antigen; IGF, insulin-like growth factor; IGFBP-3,
insulin-like growth factor binding protein-3; BMI, body mass index; WHR, waist to
hip ratio; HDL-C, high density lipoprotein cholesterol; LDL-C, low density
lipoprotein cholesterol; Tg, triglycerides; SBP, systolic blood pressure; IFG
impaired fasting glucose; IGT, impaired glucose tolerance.
doi: 10.1371/journal.pone.0081411.t001

Figure 1.  (a) Waist circumference, (b) total prostate size
and (c) PSA values (mean±standard error) in the study
sample.  
doi: 10.1371/journal.pone.0081411.g001

+0.263, p=0.069), whereas HDL-C pointed to the opposite
direction, as expected (r=-0.277, p=0.054).

Multivariate analysis
Table 3 presents the results of the stepwise multivariate

linear regression analysis regarding TP volume. Higher PSA
(coefficient: +0.111, 95%CI: +0.090 to +0.133, p<0.001), larger
waist circumference (coefficient: +0.008, 95%CI: +0.002 to
+0.013, p=0.007) and higher IGFBP-3 expression levels
(coefficient: +1.652, 95%CI: +0.989 to +2.314, p<0.001)
independently predicted higher TP volume; of note, BMI lost its
significance at the multivariate analysis, as evident from the
aforementioned model. The alternative model, at which WHR
was entered instead of waist circumference at the stepwise
algorithm, replicated the results of the aforementioned model.

Table 4 presents the results of the stepwise multivariate
linear regression analysis regarding the volume of the TZ;
interestingly, the stepwise algorithm resulted in the same
independent predictor variables as in the case of TP volume.
Specifically, higher PSA (coefficient: +0.148, 95%CI: +0.112 to
+0.184, p<0.001), larger waist circumference (coefficient:
+0.017, 95%CI: +0.009 to +0.025, p<0.001) and higher
IGFBP-3 expression levels (coefficient: +1.019, 95%CI: +0.148
to +1.890, p=0.024) were independently associated with higher
TZ volume. Once again, the alternative model (WHR instead of
waist circumference) replicated the results.

Discussion

Apart from their metabolic effects, IR and the counteractive
increased insulin levels have also significant mitogenic and
growth promoting effects that lay in the basis of the observed
correlation between MS and BPH. Insulin itself is a well-known
mitogen and growth factor [23], leading to prostate
enlargement that also activates the IGF pathway, resulting in
increased production of IGF-1 [24]. Most of the studies
investigating the link between MS and its components with
BPH, have examined serum concentrations of IGFs and
IGFBPs although it is well accepted that serum levels of these
markers may not reflect active intraprostate levels. Additionally
[25,26], there is a lack of studies today focusing on the
association between pre-diabetes, a condition also
characterized by IR, with BPH and this is a field of great
scientific interest given the high prevalence pre-diabetes in the
general population [27].

In the present study we investigated the possible correlation
between intraprostate expression of IGF-1, IGF-2 and IGFBP-3
with BPH, and according to our findings IGF-1 and IGF-2 levels
of expression were not independent predictors of BPH. On the
contrary, IGFBP-3 mRNA levels, waist circumference, as well
as WHR, and PSA were found to significantly correlate with
both TP and TZ volumes.

Our findings are in accordance with the findings of Sarma et
al., [3], that reported in a large scale study, that IGFBP-3 serum
levels were independent predictors of prostate volume.
Moreover, in the same study, no correlation was observed
between IGF-1 serum levels and prostate volume. Colao et all.,
[28], have also reported that elevated IGFBP-3 levels correlate
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with prostate overgrowth among patients with acromegaly, a
clinical syndrome which is also associated with
hyperinsulinism, IR, overt diabetes and IGT, due to high serum
GH and IGF-1 concentrations. In this context, our results
further strengthen the above findings and expand their
significance since we investigated intraprostate levels of
expression of IGFBP-3 and IGF-1 that more accurately reflect
what happens in situ.

In contrast to our findings, other researchers have reported
an inverse relationship between serum levels of IGFBP-3 with
BPH [29,13]. However, it should be underlined that our results
are not comparable with those of the previously reported
studies since we investigated intraprostate levels of expression
and not serum levels of IGFBP-3 or IGFs [29,13].

Today, IGFBP-3 is considered a protein with many
pleomorphic actions, and not a simple carrier protein,
regulating both proliferation and apoptosis in various cell types
through its autocrine and paracrine actions. So, despite the

well documented growth-inhibitory and apoptotic activity in
many cell types, IGFBP-3 has been also associated with
growth stimulation [30,31] in a variety of in vitro and in vivo
models. IGFBP-3 can either [32] inhibit the mitogenic effect of
IGFs by preventing IGF-1 from binding to its own receptor, or
enhance IGF-1 actions by increasing IGF-1’s bioavailability at
its receptor (IGF-1R). Given that most of the biological actions
of IGFs on the fibromuscular stroma in BPH are mediated by
IGF-IR [33], the proliferative effects of IGFB-3 on the
fibromuscular stoma in BPH can be easily explained. In
addition, overexpression of IGF-IR in various cell lines, as well
as in prostatic stroma cells, results in reduced apotosis [34].

Experimental data demonstrated that pre-incubation of
human fibroblasts with IGFBP-3, before the addition of IGF-I,
was associated with accumulation of IGFBP-3 inside the cell,
leading to specific forms of IGFBP-3, with lowered affinity for
IGF-1 [35,36]. This facilitates a stable exchange of IGF-1

Table 2. Results of the univariate analysis.

Continuous Variables total prostate volume (mean±SD) Pearson’s r p-value transitional zone volume (mean±SD) Pearson’s r p-value
PSA (ng/mL)       
<4.16 44.6±9.9 +0.880 <0.0001 27.7±13.5 +0.881 <0.0001
≥4.16 100.0±42.8   64.2±34.9   

IGF-2 (AU)       
<0.031 48.3±18.6 +0.325 0.023 29.0±14.8 +0.366 0.026
≥0.031 84.7±42.0   52.4±34.1   

IGFBP-3 (AU)       
<0.026 59.7±24.0 +0.588 <0.0001 39.2±22.1 +0.471 0.003
≥0.026 73.7±46.0   49.2±36.5   

Age(years)       
<71 55.2±45.9 +0.401 0.004 44.3±47.7 +0.143 0.400
≥71 79.0±19.8   45.1±18.0   

BMI (kg/m2)       
<27.0 61.9±47.1 +0.292 0.042 42.8±16.0 +0.262 0.118
≥27.0 71.6±24.4   49.2±50.8   

Waist Circumference (cm)       
<103 57.2±26.5 +0.544 0.0001 34.9±24.6 +0.728 <0.0001
≥103 74.4±45.6   57.3±36.1   

Hip Circumference (cm)       
< 101 56.0±24.2 +0.331 0.027 38.5±23.1 +0.550 0.0009
≥ 101 79.0±48.5   58.6±41.5   

WHR       
<1.01 45.9±17.2 +0.789 <0.0001 27.6±15.5 +0.842 <0.0001
≥1.01 90.5±43.2   64.2±34.9   

LDL-C (mg/dL)       
<108 53.7±50.3 +0.364 0.010 36.7±50.0 +0.247 0.141
≥108 76.7±18.7   49.2±12.4   

Tg (mg/dL)       
<85 62.5±49.3 +0.342 0.016 38.6±43.4 +0.464 0.004
≥85 70.1±25.2   50.2±13.5   

Variables significantly associated with total prostate volume and/or volume of the transitional zone. Continuous variables have been presented as <median and median for
purely descriptive reasons; their continuous nature has been appropriately taken into account at the univariate tests.
Note: PSA, prostate specific antigen; IGF, insulin-like growth factor; IGFBP-3, insulin-like growth factor binding protein-3; BMI, body mass index; WHR, waist to hip ratio;
LDL-C, low density lipoprotein cholesterol; Tg, triglycerides.
doi: 10.1371/journal.pone.0081411.t002

Pre-Diabetes and Benign Prostate Hyperplasia

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e81411



Figure 2.  Total prostate volume (mean±standard error)
in (a) younger versus older subjects, (b) subjects with
versus without metabolic syndrome.  
doi: 10.1371/journal.pone.0081411.g002

Table 3. Results of the stepwise multivariate linear
regression analysis.

Variables Category or Increment
Coefficient (95% confidence
interval) P-value

PSA (1 ng/mL increase) 0.111 (0.090 to 0.133) <0.001
Waist Circumference (1 cm increase) 0.008 (0.002 to 0.013) 0.007
IGFBP-3 [1 (AU) increase] 1.652 (0.989 to 2.314) <0.001

Alternative model (WHR instead of waist circumference at the stepwise
algorithm)
PSA (1 ng/mL increase) 0.065 (0.033 to 0.097) <0.001
WHR (1 numerical unit increase) 4.795 (2.560 to 7.030) <0.001
IGFBP-3 [1 (AU) increase] 1.795 (1.204 to 2.386) <0.001

Variables independently associated with log transformed total prostate volume.
Note: PSA, prostate specific antigen; IGFBP-3, insulin-like growth factor binding
protein-3; WHR, waist to hip ratio.
doi: 10.1371/journal.pone.0081411.t003

between the receptor and IGFBP-3 while avoiding of down
regulation of IGF-1R by excess IGF-1 [35,36].

According to a recent study, the actions of IGFBP-3 are not
predetermined and endogenous; IGFBP-3 is required for the
action of both stimulatory and inhibitory factors within the same
cell line [37].

An alternative pathway, by which IGFBP-3 contributes to
BPH development in subjects with prediabetes, could be based
on the relationship of adiponectin with BPH development
[38-40]. Higher serum adiponectin is associated with marked
reduction of BPH, but in contrast, adiponectin levels have been
found to be reduced among prediabetics or obese subjects.
Adiponectin levels are reduced even more since IGFBP-3 can
inhibit adiponectin trancription [38-40].

Our findings regarding the observed no correlation between
IGF-1 expression levels and BPH, are also in accordance with
the findings of others concerning no correlation between IGF-1
serum levels and BPH [41,42]. Additionally, at univariate
analysis, a correlation between levels of expression of IGF-2
and TP and TZ volume was observed, that lost its significance
though at multivariate analysis. Interactions between IGFs and
IGFBP-3 that regulate intraprostate IGF-1 and IGF-2 levels as
well as IGF-1R levels most probably lay in the basis of the
observed correlations and our findings further support the
pivotal role of IGFBP-3 in the molecular pathophysiology of
BPH.

Serum total PSA levels independently and positively
correlated with TP and TZ volume according to our findings.
PSA is a known protease that cleaves IGFBP-3. It also
decreases the affinity of IGFBP-3 for IGF and can potentiate
IGF action in the presence of inhibitory IGFBP-3 and contribute
to normal and malignant prostate growth [43].

In our study, waist circumference and WHR positively and
independently correlated with both TP and TZ volumes. These
are in accordance with the findings of numerous
epidemiological studies that have identified obesity in general
and abdominal obesity, in particular as a significant risk factor
for BPH [44,9]. IR, compensatory hyperinsulinemia and

Table 4. Results of the stepwise multivariate linear
regression analysis.

Variables Category or Increment
Coefficient (95% confidence
interval) P-value

PSA (1 ng/mL increase) 0.148 (0.112 to 0.184) <0.001
Waist Circumference (1 cm increase) 0.017 (0.009 to 0.025) <0.001
IGFBP-3 [1 (AU) increase] 1.019 (0.148 to 1.890) 0.024

Alternative model (WHR instead of waist circumference at the stepwise
algorithm)
PSA (1 ng/mL increase) 0.100 (0.029 to 0.171) 0.008
WHR (1 numerical unit increase) 5.653 (1.104 to 10.202) 0.017
IGFBP-3 [1 (AU) increase] 1.072 (0.027 to 2.116) 0.045

Variables independently associated with log transformed transitional zone prostate
volume.
Note: PSA, prostate specific antigen; IGFBP-3, insulin-like growth factor binding
protein-3; WHR, waist to hip ratio.
doi: 10.1371/journal.pone.0081411.t004
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hormonal alterations associated with obesity, have been
reported to be in the basis of the above [45].

Although ageing represents the central mechanism
implicated in BPH development, recent novel findings also
have highlighted the key role of the underlying age dependent
hormonal alterations. The prostate enlarges with age in a
hormonally dependent manner. These hormonal changes are
driven essentially by obesity and in particular by abdominal
obesity. In the ageing man, circulating levels of free estradiol
remain constant due to an age-related increase in body weight
and adipose cells. This imbalance between estrogen and
testosterone levels, which has been implicated in BPH
progress [46,47], is due to an increasing fat mass, which
mainly accounts for the expression of high levels of aromatase
[48], which generates increased estrogen production from
peripheral conversion of androgens.

Furthermore, it is well established that visceral fat
accumulation, as expressed by waist circumference, is
associated with IR and compensatory hyperinsulinemia [49],
which has been associated with reduction in sex hormone
binding globulin (SHBG), resulting to increase of the amount of
androgen, entering the prostate cells, promoting to BPH
development [50].

Regarding the relation of individual components of MS with
BPH, we obtained similar results to Rohrmann et al. [51], who
reported, using data from NHANES III, no significant
relationship between lower urinary tract symptoms and total
cholesterol:HDL ratio, LDL-C , triglycerides, or total cholesterol.
Similarly, there was no association of patient-reported
hyperlipidemia with histological BPH in a case control analysis
on Italian men [52]. No association of serum lipids or
lipoproteins with BPH was also found in a cohort of U.S. Air
Force Veterans [53].

In contrast, Hammarsten et al. [4], found in a cohort of
Swedish men with BPH, that lower HDL-C, higher LDL-C, and
higher triglycerides were associated with increased prostate
volume. These findings were in contrast to ours. In our study,
with the exception of waist circumference, no association was
seen among MS components and BPH, even though in
univariate analysis, LDL-C and triglycerides were positively
correlated with prostate volume (table 2). In addition, HDL-C
correlated inversely with TP volume at a borderline
significance. (r=-0.277, p=0.054).

However, lipid abnormalities are frequently related to the
amount of visceral fat [54], and strong cross sectional
associations [55] have been found among, waist
circumference, an established measure of visceral adiposity
and various metabolic risk factors, also implicated in BPH
development. It can be assumed that waist circumference may
have masked the effect of these metabolic risk factors on BPH
development, because of these existing interrelations as our
study suggests.

As a final point, the lack of consensus on the exact definition
of MS, the different populations, the existence of different end
points, such as BPH or LUTS, make very difficult the direct
comparison of study results.

Although most of the studies demonstrated that MS might
predispose patients to a higher risk for BPH, other studies,

similarly to our findings, did not support this association
[53,56-58]. However, it is well accepted that IR plays a major
role in the pathophysiology of MS, even though NCEP criteria
for identifying MS, does not include a marker of IR [59,60].
Since significant interrelations have been observed between
abdominal obesity and IR [49], it seems reasonable that waist
circumference, can be considered as a multivariate predictor of
BPH, instead of MS presence, as shown by our study.

There are several limitations to this study. First, serum
concentrations of androgens and SHBG were not determined.
However, we assumed that the results of our study were not
significantly affected by the fact that androgen or SHBG levels
were not included among the adjusting co-variates, given that
androgen action is mainly indirect through prostatic production
of some growth factors [61]. As men age, the concentration of
free testosterone decreases, but dihydrotestosterone (DHT), its
intracellular metabolite, generated by the prostatic 5-a
reductase [62] continues to accumulate and stimulates
production and secretion of growth factors, promoting the
growth of cells. DHT binds with androgen receptors and
triggers the transcription of growth factors, which in turn cause
prostatic tissue growth. Thus, the effect of both testosterone
and DHT on prostate volume is carried by growth factors
[63,64,65].

Second, the cross-sectional design of our study does not
allow establishing cause-effect relationship.

Third, homeostatic model assessment (HOMA) IR was not
calculated. Despite the wide use of HOMA-IR, HOMA IR is not
an ideal way to measure IR, given that there is no consensus
for HOMA-IR cut off values for identifying subjects with IR. In
view of the fact that IR and abdominal obesity are positively
related [49,66] and the risk of IR is positively associated with
increasing waist circumference [67,68], HOMA –IR finally was
not finally determined in our study and waist circumference was
determined as a proxy index for insulin resistance [69]. At the
end, it is well accepted that waist circumference provides a
rapid, inexpensive and non-invasive way of identifying the
presence of IR [70].

Fourth we could not rule out confounding by variables such
as physical activity, smoking, alcohol consumption, since our
multivariate models were not adjusted for these variables.

In summary, our findings show that intra-prostatic levels of
IGFBP-3, PSA and waist circumference, but not overall obesity,
are positively associated with prostate volume. IGFBP-3 seems
to be a multifunctional protein, which can potentiate or inhibit
IGF activity. However, in a dynamic in vivo system,
homeostatic mechanisms cause compensatory responses and
form complex interrelations, thus it becomes extremely difficult
to estimate the independent effects of each protein implicated
in BPH pathogenesis. To the best of our knowledge, this is the
first study to demonstrate a relationship between intra-prostatic
levels of IGFBP-3 and prostate volume in subjects with pre-
diabetes. Future investigation is needed to further elucidate the
relationship between obesity, glucose intolerance and IGF-
IGFBP- system and prostatic growth, targeting to new
treatment strategies focused on diet, exercise, and drugs
inhibiting prostate cell proliferation.
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