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ABSTRACT:
Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cell 

carcinoma (RCC). It is one of the most therapy-resistant carcinomas, responding 
very poorly or not at all to radiotherapy, hormonal therapy and chemotherapy. A 
more comprehensive understanding of the deregulated pathways in ccRCC can lead 
to the development of new therapies and prognostic markers. We performed a meta-
analysis of 5 publicly available gene expression datasets and identified a list of co-
deregulated genes, for which we performed extensive bioinformatic analysis coupled 
with experimental validation on the mRNA level. Gene ontology enrichment showed 
that many proteins are involved in response to hypoxia/oxygen levels and positive 
regulation of the VEGFR signaling pathway. KEGG analysis revealed that metabolic 
pathways are mostly altered in ccRCC. Similarly, Ingenuity Pathway Analysis showed 
that the antigen presentation, inositol metabolism, pentose phosphate, glycolysis/
gluconeogenesis and fructose/mannose metabolism pathways are altered in the 
disease. Cellular growth, proliferation and carbohydrate metabolism, were among the 
top molecular and cellular functions of the co-deregulated genes. qRT-PCR validated 
the deregulated expression of several genes in Caki-2 and ACHN cell lines and in 
a cohort of ccRCC tissues. NNMT and NR3C1 increased expression was evident in 
ccRCC biopsies from patients using immunohistochemistry. ROC curves evaluated 
the diagnostic performance of the top deregulated genes in each dataset. We show 
that metabolic pathways are mostly deregulated in ccRCC and we highlight those 
being most responsible in its formation. We suggest that these genes are candidate 
predictive markers of the disease.

INTRODUCTION

Renal-cell carcinoma (RCC) is the most common 
kidney neoplasm, comprising 3% of all adult malignancies 
[1]. Its incidence has increased steadily over the past 20 
years in the United States and Europe; 35,000 new cases 
and 12,000 deaths now occur annually in the United 
States alone. If detected in early stages, it is potentially 

curable by surgical resection; however, to date there is no 
curative treatment for metastatic RCC. Clear cell renal cell 
carcinoma (ccRCC) represents the most common subtype 
(83%) of RCC [2]. The most striking phenotypic feature 
of ccRCC is its clear cell morphology, which has been 
linked to lipid and glycogen accumulation [3]. Moreover, 
ccRCC is one of the most therapy-resistant carcinomas, 
responding very poorly or not at all to radiotherapy, 
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hormonal therapy and chemotherapy. All these facts 
emphasize the importance of developing early diagnostic 
markers for this particular RCC subtype. 

Meta-analysis consists of statistical techniques to 
combine results from several studies in order to increase 
the statistical power and reproducibility compared with 
any single study [4]. Microarray gene expression profiling 
has been used in the past by various groups [5-13] to 
distinguish the various histological subtypes of RCC and 
consequently to identify novel tumor markers. The general 
procedure identifies markers in accordance with average 
differential expression level (fold change) and/or some 
level of significance as measured by the t-test. All these 
publicly available microarray expression datasets provide 
a rich resource for genome-wide information on RCC and 
provide the ideal opportunity to perform a meta-analysis 
study using a large number of cases.

The Oncomine database [14] is an online collection 
of microarray expression data from various cancer-

related sources. We hypothesized that a meta-analysis 
of several gene expression datasets of ccRCC can give 
a potentially significant list of co-deregulated genes (co-
DEGs) in ccRCC, which is important to define pathways 
in which the genes of interest are involved. To increase the 
likelihood of revealing truly significant deregulated genes, 
which should have higher potentials to be used as novel 
markers for the disease, we analyzed their expression 
profile over 5 independent studies, greatly increasing the 
significance of results.

RESULTS

Identification of candidate ccRCC markers for 
network analysis

The workflow of our study is summarized in Figure 
1. Data mining of five microarray datasets from the 

Figure 1: Workflow of the study. Initially, five Oncomine microarray datasets were compared and the co-deregulated genes (co-
DEGs) among them were retrieved. The co-DEGs were further enquired regarding their use as candidate markers for ccRCC. Next, the 
canonical pathways in which these co-DEGs are implicated were identified, as well as the networks that they form, and the top deregulated 
molecules among them. Following, validation of the deregulated expression levels of these genes was performed both in clear cell renal cell 
carcinoma cell lines, as well as in a cohort of ccRCC patients. Immunohistochemistry was performed in biopsies from the patient cohort 
for the top deregulated genes. ROC analysis was used to evaluate the discriminatory potential of the candidate biomarker genes. Further 
enrichment analysis was finally performed for the co-deregulated genes.
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Oncomine repository for co- deregulated genes in ccRCC 
vs. their non-tumor kidney tissue, led to the identification 
of a list of 93 up- and 76 down-regulated genes, 
respectively. These genes belonged simultaneously within 
the top 1% of the up- or down-regulated genes, in at least 
two datasets, with a p<1E-4 and fold change>2 (Table S1). 
None of the DEGs belonged simultaneously to the top 1% 
of the up-regulated genes, in all 5 datasets. The most co- 
up-regulated gene among 4 datasets was BTN3A3. Twenty 
genes were co-up-regulated among 3 datasets and 93 genes 
were co-up-regulated between 2 datasets, respectively 
(Figure 2.A). A similar approach was performed in order 
to identify the genes that belonged to the top 1% of the 
down-regulated genes, simultaneously in all 5 datasets. 
KCNJ1 and TMPRSS2 were the top co-down-regulated 
genes, exhibiting low levels of expression in 4 datasets. 
Fifteen and 81 genes were co-down-regulated in 3 and 2 
datasets, respectively (Figure 2.B).

Ingenuity Pathway Analysis (IPA) for the top1% 
of the co-deregulated genes

Canonical Pathways:

Overall, the majority of our deregulated pathways 
were related to metabolic processes. Specifically, IPA 
was focused on the following five canonical pathways: 
The antigen presentation pathway (p=3.71E-08; Ratio, 
0.163), containing HLA-DMB, HLA-DPA1, HLA-
DPB1, HLA-DRA, PSMBB, PSMB9 and TAPBP (up-
regulated); the inositol metabolism (p=7E-08; Ratio, 
0.222), containing ALDOA, ALDOC (up-regulated), 
ALDH6A1 and ALDOB (down-regulated); the pentose 
phosphate pathway (p=5.49E-06; Ratio, 0.062), containing 
ALDOA, ALDOC, PFKP (up-regulated), ALDOB and 
FBP1 (down-regulated); glycolysis/gluconeogenesis 
(p=9.03E-06; Ratio, 0.053), containing ALDOA, ALDOC, 

Figure 2: The Venn diagrams depict the co-upregulated (A) and co-downregulated (B) genes in ccRCC vs. their non-
tumor kidney tissue, among Oncomine datasets “Higgins Renal”, “Yusenko Renal”, “Lenburg Renal”,”Jones Renal” 
and “Gumz Renal”.

Figure 3: Ingenuity Pathway Analysis (IPA) revealed the top canonical pathways of the top 1% deregulated genes in 
ccRCC vs. the normal tissue samples, among the 5 Oncomine datasets.
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ENO2, LDHA, PFKP (up-regulated), ALDOB and FBP1 
(down-regulated); and fructose and mannose metabolism 
(p=6.02E-05; Ratio, 0.037), containing ALDOA, ALDOC, 
PFKP (up-regulated), ALDOB and FBP1 (down-
regulated) (Figure 3).
Correlation between ccRCC and other diseases: 

To detect any possible correlation between ccRCC 
and other diseases at the genomic level, we compared 
the DEGs between ccRCC and other disease gene sets. 
Comparisons were made with the existing genomic data 
provided by the software. As expected, ccRCC was 
highly associated with cancer (p=2.35E-11 - 3.13E-03; 
77 molecules); inflammatory response (p=2.86E-11 - 

3.00E-03; 44 molecules); renal and urological disease 
(p=3.95E-10 - 3.00E-03; 32 molecules); reproductive 
system disease (p=4.39E-09 - 3.00E-03; 46 molecules) 
and respiratory disease (p=4.69E-09 - 3.02E-03; 31 
molecules).

Furthermore, IPA identified that the top co-
DEGs among the 5 datasets participate in the following 
molecular and cellular functions: cell-to-cell signaling 
and interaction (p=1.56E-09 - 3.00E-03; 42 molecules); 
cellular function and maintenance (p=3.13E-08 - 2.97E-
03; 48 molecules); molecular transport (p=3.13E-08 - 
3.00E-03; 51 molecules); cellular growth and proliferation 
(p=5.01E-08 - 2.85E-03; 59 molecules) and carbohydrate 
metabolism (p=7.00E-08 - 2.37E-03; 31 molecules). The 
top 10 up- and down-regulated molecules in ccRCC vs. 
the normal tissue are depicted in Table 1.
Top Transcription Factors:

HIF1A, STAT1, STAT3, SP1 and LHX1 were the 
most significant Transcription Factors implicated in the 
disease, based on the z-score regulation. HIF1A, STAT1, 
STAT3 and SP1 were predicted to be activated (HIF1A: 
z-score = 2.444; overlap p= 5.68E-12; STAT1: z-score 
= 2.260; overlap p= 1.77E-03; STAT3: z-score = 2.125; 
overlap p= 4.60E-04; SP1: z-score = 2.103; overlap p= 
9.34E-04). On the other hand, LHX1 was predicted to 
be inhibited (z-score = -2.509; overlap p= 2.13E-06). 
Specifically, 12 out of the 18 HIF1A target molecules, were 
identified to have expression direction consistent with 
the activation of HIF1A (VEGFA, TLR2, PDK1, LDHA, 
IGFBP3, FLT1, ESRRG, EGLN3, CA9, C7orf68, ALDOC 
and ALDOA, activated; IGFBP2, inhibited). All STAT1 
target genes exhibited expressional direction consistent 
with the activation of STAT1 (PSMB9, PSMB8, FCER1G, 
CD14, CASP1 and BTG1, activated; GATA3, inhibited). 
Six out of the 10 STAT3 target genes had expressional 
direction consistent with the activation of STAT3 (VIM, 
VEGFA, TIMP1, PSMB9, PSMB8 and IFI16, activated). 
Most SP1 target genes (7 out of 11) showed expressional 
direction consistent with the activation of SP1 (VEGFA, 
TLR2, SCARB1, LIPA, FN1, FLT1 and ABCA1, activated). 
Also, the majority of the LHX1 target genes (6 out of 7) 
had expressional direction consistent with the inhibition 
of LHX1 (SLC34A1, SLC12A1, NPHS2, HAO2, FBP1 and 
ALDOB, activated; EHD2, activated) (Figure 4). 

Table 1: Detailed information about the 5 public expression datasets of clear cell renal carcinoma (ccRCC) that were used in the 
present study.

Dataset Platform GEO Dataset 
Accession #

Number of 
ccRCC samples

Number of 
normal samples Citation

Gumz Renal Affymetrix HU133A & HU133B GSE6344 20 20 Clin Cancer Res. 2007 Aug 15;13(16):4740-9

Higgins Renal Affymetrix HU133A GSE4125 23 3 Am J Pathol. 2003 Mar;162(3):925-32

Jones Renal Affymetrix HU133A GSE15641 32 23 Clin Cancer Res. 2005 Aug 15;11(16):5730-9

Lenburg Renal Affymetrix HU133A & HU133B GSE781 24 10 BMC Cancer. 2003 Nov 27;3:31

Yusenko Renal Affymetrix HU133A & HU133B GSE6280 6 12 Int J Biol Sci. 2009 Jul 29;5(6):517-27

Figure 4: Ingenuity Pathway Analysis (IPA) revealed 
HIF1A, STAT1, STAT3, SP1 and LHX1 among the top 
Transcription Factors of the top 1% deregulated genes 
in ccRCC vs. the normal tissue samples, among the 5 
Oncomine datasets.
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Gene Networks:

IPA identified 10 gene networks, with scores ranging 
from 18 to 35, of which the top 5 were associated with: 
1) Hematological system development and function, cell-
to-cell signaling and interaction, reproductive system 
development and function (score=35) (Figure 5.A); 2) 
Carbohydrate metabolism, cell death, endocrine system 
disorders (score=33) (Figure 5.B); 3) Carbohydrate 
metabolism, small molecule biochemistry, cellular 
development (score=30) (Figure 5.C); 4) Molecular 
transport, renal and urological disease, cellular function 
and maintenance (score=28) (Figure 5.D); 5) Lipid 
metabolism, small molecule biochemistry, molecular 
transport (score=26) (Figure 5.E). The merged top 3 gene 
networks (score≥30) are depicted in (Figure 6).

Figure 5: The genes forming the top 5 gene networks as identified by IPA (score>25), participate in: A) Hematological 
system development and function, cell-to-cell signaling and interaction, reproductive system development 
and function (score=35); B) Carbohydrate metabolism, cell death, endocrine system disorders (score=33); C) 
Carbohydrate metabolism, small molecule biochemistry, cellular development (score=30); D) Molecular transport, 
renal and urological disease, cellular function and maintenance (score=28) and E) Lipid metabolism, small molecule 
biochemistry, molecular transport (score=26).
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Table 2: Primer pairs used for the amplification of the top up/down-regulated and co-up/down-regulated genes, length 
of each PCR product and annealing temperature of each pair.

Gene Forward Reverse Amplicon 
size (bp)

Annealing 
Tm (°C)

Top down-regulated genes

NDUFA4L2 5'-CCTGAGCCCCAATGACCAATA-3' 5'-TCTGGCCGGTCCTTCTTCA-3' 75 57

PLIN2 5'-ATGGCATCCGTTGCAGTTGAT-3' 5'-GGACATGAGGTCATACGTGGAG-3' 90 57

NNMT 5'-ATATTCTGCCTAGACGGTGTGA-3' 5'-TCAGTGACGACGATCTCCTTAAA-3' 113 60

ENO2 5'-ACAAACAGCGTTACTTAGGCAA-3' 5'-TTCTCAGTCCCATCCAACTCC-3' 148 60

AHNAK2 5'-GTGCAGAAACGGAAGATGACC-3' 5'-GCCTCAGTCGTGTATTCGTAGA-3' 106 57

NETO2 5'-GGACTGGGATTTCGAGCAAAA-3' 5'-AGAGCGCACTATTCCATCAGC-3' 126 56

CA9 5'-TTTGCCAGAGTTGACGAGGC-3' 5'-GCTCATAGGCACTGTTTTCTTCC-3' 97 58

VWF 5'-CCGATGCAGCCTTTTCGGA-3' 5'-TCTGGAAGTCCCCAATAATCGAG-3' 134 60

COL23A1 5'-TCCATCCGAATGTGTCTGCC-3' 5'-GTAGCCATCTCGTCCTGATTG-3' 103 58

EHD2 5'-TCCGCAAACTCAACCCTTTC-3' 5'-TCTCCAGGACCTGATTAGGGA-3' 78 58

NPHS2 5'-ACCAAATCCTCCGGCTTAGG-3' 5'-CAACCTTTACGCAGAACCAGA-3' 106 57

Top up-regulated genes

CALB1 5'-AACTTTTGTGGATCAGTATGGGC-3' 5'-GGTAATACGTGAGCCAACTCTAC-3' 72 56

RALYL 5'-GAGTGAGCGACATGCAAGAG-3' 5'-GTCAAAGACATAACCGCCAACA-3' 193 57
KCNJ1 5'-CATCCTGGGCCCTGACAAA-3' 5'-AAGCGAGTGACGACCCATTTC-3' 202 58
KNG1 5'-CTAAGACGGTTGGCTCTGACA-3' 5'-TGCCGTGCATTCTCCAGTG-3' 140 58

SERPINA5 5'-AAAGCAAACGAAGGGCAAGATT-3' 5'-CTCTTGGGTGCCTTTGTGGTT-3' 130 58

CLDN8 5'-CTTGGTGGTGTTGGAATGGTG-3' 5'-TCACGCAATTCATCCACAGTC-3' 130 57

SLC12A3 5'-CTCCACCAATGGCAAGGTCAA-3' 5'-GGATGTCGTTAATGGGGTCCA-3' 206 56

CA10 5'-TCATCGTCTGCATATCAGCTCA-3' 5'-GTTCACCAATCCCCAGAAAGAAG-3' 119 56

ATP6V0A4 5'-CTCCCACGGGAAATGATTACC-3' 5'-CGTCTCAAAGAAGTCTTGGGTT-3' 156 60

ACTB 5'-CCAGCACAATGAAGATCAAGATCA-3' 5'-TAGTCCGCCTAGAAGCATTTGC-3' 172 60

RPL13A 5'-CCTGGAGGAGAAGAGGAAAGAGA-3' 5'-TTGAGGACCTCTGTGTATTTGTCAA-3' 101 60

GAPDH 5'-GGAAGGTGAAGGTCGGAGTCA-3' 5'-GTCATTGATGCCAACAATATCCACT-3' 127 60

Co-Up-regulated among four datasets 

BTN3A3 5'-AACCACCATTCTTCAGTGGG-3' 5'-GAAGGAAAGCCAGGGAACTT-3' 146 60

Co-up-regulated among three datasets 

PDIA5 5'-AGTGGAGAAAGGAGCCAGC-3' 5'-TGCAGAGGACAGCCATGA-3' 110 60

BHLHE41 5'-GGGACATCTGGAGAAAGCTG-3' 5'-ATCCAAGTCGGACTGAATGG-3' 148 60

SLC12A1 5'-TGAGATTCACGAGCAACTCGC-3' 5'-CCCATCACCGTTAGCAACTCT-3' 76 60

VEGFA 5'-ATGACGAGGGCCTGGAGTGTG-3' 5'-CCTATGTGCTGGCCTTGGTGAG-3' 91 60

CYBB 5'-TCGAAATCTGCTGTCCTTCC-3' 5'-AATCATCCATGCCACCATTT-3' 109 60

ARHGDIB 5'-GACTGGGGTGAAAGTGGATAAAG-3' 5'-TCGTCGGTGAAGAAGGACTTG-3' 150 60

NKG7 5'-TCCAGACCTTCTTCTCCTGG-3' 5'-GCCTTCTGCTCACAAGGTTT-3' 134 60

ATP2B4 5'-CTAGCTTGGTTGCCACACTG-3' 5'-GAGCTTCCTGGATACCGATG-3' 150 60
CAV1 5'-CGAGAAGCAAGTGTACGACG-3' 5'-TCCCTTCTGGTTCTGCAATC-3' 122 60
EGLN3 5'-AGCTTCCTCCTGTCCCTCAT-3' 5'-CTGTTCCATTTCCCGGATAG-3' 118 60
IGFBP3 5'-AACGCTAGTGCCGTCAGC-3' 5'-GACGGGCTCTCCACACTG-3' 113 60

LAIR1 5'-GGCCTAGTGCTCTGCCTG-3' 5'-ACACGAAAGTCACATGGCTC-3' 118 60

NR3C1 5'-TTCCCTGGTCGAACAGTTTT-3' 5'-AGAGTTTGGGAGGTGGTCCT-3' 115 60

PFKP  5'-GTGCGCATGGGTATCTACG-3'  5'-ACTTGCAGGATGCTGGAGAC-3' 125 60

RNASET  5'-GTACTTTGGCAGAAGCCTGG-3'  5'-CCATATACTCTGGCAAGGGC-3' 132 60

Co-down-regulated among four datasets

TMPRSS2 5'-GGACAGTGTGCACCTCAAAGAC-3' 5'-TCCCACGAGGAAGGTCCC-3' 71 60
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Diagnostic performance

A ROC test was performed for the top 20 DEGs 
in ccRCC using the extracted MAS5-calculated signal 
intensity values of each gene from each GEO datasets 
(Table 2). The best discriminatory genes (AUC>0.75 and 
p<0.05) between ccRCC and the normal tissue in each 
dataset are depicted in Figure 7.

Validation of the DEGs in ccRCC cell lines and a 
ccRCC patient cohort

In order to validate the DEGs we used two ccRCC 
cell lines (ACHN and Caki-2) and the HEK-293 cells 
were used as a control. We also validated the DEGs in a 
cohort of 10 ccRCC freshly frozen patient samples. The 
significantly reduced expression levels of ARHGDIB, 
NKG7, IGFBP3, LAIR1, RNASET, TMPRSS2 and EGLN3 
and the significantly high expression of AHNAK2 were 
validated in the ACHN vs. HEK-293 cells. Furthermore, 
PDIA5, ARHGDIB and ATP2B4 down-regulation EGLN3 
along with NDUFA4L2 and AHNAK2 up-regulation was 
validated in the Caki-2 vs. HEK-293 cells (Figure 8).

In the patient cohort, ATP6V0A4, KCNJ1, CLDN8, 
TMPRSS2 and KNG1 were significantly reduced, whereas 
NNMT, NR3C1, CAV1, ARHGDIB, NETO2 and ATP2B4 
mRNA levels were significantly elevated in ccRCC 
(Figure 9). The normalized expression values of the latter 
revealed good discriminatory ability between ccRCC and 
normal kidney (Figure 10 and Table 3).

Upregulation of NNMT and NR3C1 expression in 
renal biopsies

Immunohistochemical (IHC) staining of NNMT and 
NR3C1 proteins was examined in FFPE biopsy samples of 
24 confirmed ccRCC patients. Both NNMT and NR3C1 
expression was increased in the kidney sections of these 
patients as compared to biopsies from non-cancerous 
kidney tissue (Figure 11).

Further Enrichment analyses

GO enrichment for the top DEGs revealed genes 
that participate in biological processes such as response 
to organic substance (adjP=0.0002), response to chemical 
stimulus (adjP=0.0055), excretion (adjP=0.0067), 
regulation of epithelial cell proliferation (adjP=0.0067), 
response to hormone stimulus (adjP=0.0067), 
response to steroid hormone stimulus (adjP=0.0067), 
response to oxygen levels (adjP=0.0081), response 
to endogenous stimulus (adjP=0.0081), response to 
hypoxia (adjP=0.0081) and epithelial cell proliferation 
(adjP=0.0081). GO enrichment for the co-upregulated and 
the co-downregulated genes was also performed (Table 
S2). Among the most important biological processes of 
the up-regulated genes, response to hypoxia/oxygen levels 
(EGLN3, VEGFA, CASP1, FLT1 and CA9) and positive 
regulation of the vascular endothelial growth factor 
receptor signaling pathway (VEGFA and FLT1) could be 
discriminated. 

KEGG enrichment was also performed to identify 
the pathways in which the top DEGs participate (Table 
S3). Among the co-upregulated genes, CSF2RB, 
VEGFA, FLT1 and CSF1R participate in the Cytokine-
cytokine receptor interaction pathway (adjP=0.0003); 
VWF, VEGFA and FLT1 are related to the Focal 
adhesion pathway (adjP=0.0018) and EGLN3 and 
VEGFA participate in the Renal cell carcinoma pathway 
(adjP=0.0020). Among the co-downregulated genes, 
ADH6, ALAD, ALDH6A1, FBP1, MAN1C1, CYP2B6, 
ABAT, HAO2, ALDOB, INPP5J, PIPOX and ATP6V1B1 
participate in Metabolic pathways (adjP=1.78e-08); 
ADH6, ALDOB and FBP1 are related to Glycolysis/
Gluconeogenesis (adjP=0.0003); ALDOB and FBP1 are 
related to the Fructose and mannose metabolism pathway 
(adjP=0.0017) and the pentose phosphate pathway 
(adjP=0.0017). Furthermore, ABAT and ALDH6A1 
participate in the Propanoate metabolism pathway 
(adjP=0.0017) and the Valine, leucine and isoleucine 
degradation pathway (adjP=0.0023). Other metabolic 
pathways were also deregulated, such as the Metabolism 
of xenobiotics by cytochrome P450; the Retinol 
metabolism and the Drug metabolism - cytochrome P450 
pathways (CYP2B6 and ADH6, adjP=0.0034). 

Likewise, Wikipathways (Table S4) and Pathway 
Figure 6: Merge of the top 3 gene networks as revealed 
by IPA.
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Figure 7: ROC analysis of the top 20 DEGs in ccRCC vs. the normal kidney using each datasets extracted MAS5-
calculated signal intensity values. Of them, the DEGs with a p<0.01 and an AUC>0.8 were selected as successful distinguishing 
markers between ccRCC and the normal kidney tissues.In the “Gumz Renal” dataset, NDUFA4L2, PLIN2, NNMT, ENO2, CA9, CA10, 
KCNJ1, SERPINA5, SLC12A3, CALB1, EHD2 and NPHS2 showed a median AUC=1.00 and p<0.01. In the “Jones Renal” dataset, PLIN2, 
NNMT, ENO2, AHNAK2, NETO2, CA9, VWF, EHD2, NPHS2, CALB1, RALYL, KCNJ1, SERPINA5, SLC12A3, CA10, CLDN6, 
ATP6V0A4 and NDUFA4L2 had median AUC=0.969 (p<0.001) and in the “Lenburg Renal” dataset, NDUFA4, NNMT, ENO2, AHNAK2, 
NETO2, VWF, NPHS2, CALB1, SERPINA5, SLC12A3 and ATP6V0A4 exhibited median AUC=0.90 (p<0.001). In the Yusenko dataset, 
CA10, NETO2, CA9, NPHS2, AHNAK2, RALYL, ATP6V0A4, ENO2, KCNJ1, SERPINA5, CALB1, COL23A1 and CLDN6 had median 
AUC values of 1.000 (p<0.01).

Figure 8: The Volcano-plots depict the DEGs in ACHN and Caki-2 cell lines compared to the HEK-293 cells.

Figure 9: The Volcano-plot depicts the DEGs in a 
cohort of 10 ccRCC patient samples compared to the 
adjacent normal kidney samples.

Figure 10: ROC analysis of the validated DEGs in the 
cohort of the ccRCC patients.
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Commons (Table S5) enrichment analysis were performed 
for the top deregulated genes, as well as for the co-up- 
and co-downregulated ones. Enrichment analysis for 
the targets of the co-upregulated and co-downregulated 
transcription factors was finally performed, using as 

data source the MSigDB (Table S6). The transcription 
factors E12 (adjP=1.78e-06), NFAT (adjP=1.50e-05), SP1 
(adjP=0.0030) and FOXO4 (adjP=2.28e-05) regulated 
the highest number of the current 169 co-downregulated 
genes (12, 8, 9 and 9 genes, respectively), whereas PAX4 
(adjP=0.0019) and GATA1 (adjP=0.0009) regulated the 
highest number of the co-upregulated genes (6 and 4, 
respectively).

DISCUSSION 

In the present study, we performed a meta-analysis 
in order to identify deregulated genes in ccRCC compared 
to the normal kidney and to measure their discriminatory 
capability between the two tissues. For this purpose, 
we extracted data from five Oncomine datasets and 
analyzed them, accordingly. A list of co-deregulated 
genes among the five microarray datasets was identified 
and IPA revealed the canonical pathways in which they 
are implicated, as well as the networks that they form and 
their associated functions. The deregulated expression 
pattern of these genes was validated in two ccRCC cell 
lines and in a cohort of ccRCC patients. We also attempted 
to gain a better understanding of the molecular pathways/
mechanisms involved in ccRCC, through comprehensive 
bioinformatics analyses.

Knowledge of gene regulatory networks 
is considered to be of crucial importance for the 
understanding of diseases such as cancer, as it may 
lead to new therapeutic approaches. Our investigation 
revealed that the top 1% of the co-DEGs take part in the 
Antigen Presentation pathway, the Inositol Metabolism 
pathway, the Pentose Phosphate pathway, in Glycolysis/
Gluconeogenesis, as well as in the Metabolism of Fructose 
and Mannose. Similar observations corroborating our 
results were recently reported by others [15-19]. White 
et al. [15] used three independent algorithms and also 
showed that the aforementioned pathways are among the 

Table 3: Top 10 up- and top 10 down-regulated genes 
in ccRCC versus the normal kidney tissue. Fold change 
difference and statistical significance are depicted.
Top 10 up-regulated 
molecules 

Fold change up-
regulation p-value

NDUFA4L2 53.935 <0.01

PLIN2 27.86 <0.01

NNMT 20.86 <0.01

ENO2 19.973 <0.01

AHNAK2 16.622 <0.01

NETO2 15.808 <0.01

CA9 14.483 <0.01

VWF 13.061 <0.01

COL23A1 12.752 <0.01

EHD2 12.696 <0.01

Top 10 down-regulated 
molecules 

Fold change down-
regulation p-value

ATP6V0A4 -19.699 <0.01

CA10 -21.452 <0.01

SLC12A3 -23.667 <0.01

CLDN8 -27.113 <0.01

SERPINA5 -35.449 <0.01

KNG1 -38.45 <0.01

KCNJ1 -50.79 <0.01

RALYL -53.576 <0.01

CALB1 -103.68 <0.01

NPHS2 -159.107 <0.01

Figure 11: Kidney biopsies from normal kidney (control) and ccRCC patients were stained with anti-NNMT and anti-
NR3C1 antibodies. In the patients with confirmed ccRCC, serial sections showed stronger NNMT and NR3C1 immunoreactivity as 
compared to the controls.
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top deregulated pathways in metastatic RCC.
In the current study, we found that there was a 

significant overlap (77 genes) between genes deregulated 
in ccRCC and those reported to be deregulated in other 
cancers, suggesting that different cancer types share 
common pathways. Furthermore, 32 of them play a 
significant role in renal and urological diseases. The most 
significant molecular and cellular functions of these co-
DEGs involved cell-to-cell signaling, cellular function 
and maintenance, molecular transport, cellular growth and 
proliferation.

Our analysis revealed that the antigen presentation 
pathway was the most altered pathway in ccRCC and 
BTN3A3 was the most up-regulated gene among all 
five ccRCC datasets. The butyrophilin (BTN) genes are 
a group of major histocompatibility complex (MHC)-
associated genes that encode type I membrane proteins 
with 2 extracellular immunoglobulin (Ig) domains and an 
intracellular B30.2 (PRYSPRY) domain. Autoantibodies 
that are produced against tumor-associated antigens 
attract a growing interest for cancer detection, differential 
diagnostics and prognosis. In line with our analysis, 
BTN3A3 antigen and its cognate autoantibody was 
recently suggested as a valuable target for further analysis 
as potential cancer biomarker [20].

Extensive data in the literature show that cancer 
cells reprogram their metabolism and shift from aerobic 
to anaerobic respiration even in the presence of oxygen. 
This theory was initially proposed by Warburg over 50 
years ago [21] and has been recently refreshed [9,22-25]. 
Reversal of the Warburg effect has also been explored 
as a novel treatment for cancer [26]. Now considered a 
hallmark of cancer, metabolic reprogramming of cells 
results in an unusually high rate of glycolysis and lactate 
production even in the presence of oxygen. Both our IPA 
and KEGG enrichments supported that the majority of the 
deregulated pathways in ccRCC are related to metabolic 
processes. Glycolysis was among the top deregulated 
pathways among the five datasets. Our observations 
are in line with the increasing evidence for the role of 
altered metabolism in the pathogenesis of renal cancer 
[2,15,22,27-29]. Our data are also consistent with reports 
from other cancers, such as metastatic cervical carcinoma 
and head and neck cancers [30-32]. In these works the 
authors reported increased glycolysis as measured by 
high levels of lactate in these tumours. In metastasis, it 
has been hypothesized that the glycolytic phenotype arises 
as a result of transient hypoxic episodes that occur while 
cells travel to distant sites through the bloodstream [33]. 
Ultimately, cells that are able to perform glycolysis and are 
resistant to hypoxia, will be selectively favored for survival 
and growth and result in successful metastasis [33]. 
Another proposed explanation for the shift to glycolysis is 
that cancer cells may have damage to their mitochondria 
through acquired mutations, or may even shut down their 
mitochondria being the powerhouse of the cell and helps 

regulate apoptosis. In our meta-analysis, the platelet 
isoform of phosphofructokinase (PFKP) (ATP D-fructose-
6-phosphate-1-phosphotransferase) was among the most 
co-upregulated genes among all ccRCC datasets. Of 
specific note is that our data show that PFKP participates 
in almost all of the major deregulated canonical pathways 
in the disease: the pentose phosphate pathway, glycolysis/
gluconeogenesis and fructose and mannose metabolism 
pathway. PFK catalyzes the irreversible conversion of 
fructose-6-phosphate to fructose-1,6-bisphosphate and 
is a key regulatory enzyme in glycolysis. It has been 
shown to be abundantly expressed in human tumors and 
its expression was linked to long-standing observations 
concerning the apparent coupling of enhanced glycolysis 
and cell proliferation [34,35].

A comprehensive understanding of the deregulated 
metabolic pathways in cancer has much potential for 
the development of novel therapies. For example, the 
use of glufosfamide (D-19575), a cytotoxic alkylating 
agent in which isophosphoramide mustard, the cytotoxic 
metabolite of ifosfamide, is covalently linked to β-D-
glucose [8,36], has been studied for its effectiveness as a 
treatment for cancers alone or in combination with other 
treatments [37-39]. In addition, the identification of novel 
pathways involved in tumorigenesis may allow for the 
discovery of new compounds that can induce synthetic 
lethality. After the discovery that RCC tumors, like many 
others, depend on glycolysis, Chan et al. [40] determined 
this dependence to be, in part, a result of induction of 
the glucose transporter 1 (GLUT1). They identified a 
compound that inhibited the uptake of glucose through 
GLUT1, which resulted in cancer cell death. Because 
GLUT1 dependence was observed only in cancer cells 
lacking the von Hippel-Lindau (VHL) gene, treatment 
with the GLUT1 inhibiting compound selectively killed 
cancer cells and had no effect on normal kidney cells. 
Exploitation of this dependence has also been shown to be 
promising for the treatment of other cancers.

The data from the present study corroborate that 
kidney cancer cells manipulate more than one molecular 
mechanisms and a number of biological pathways to 
achieve their aggressive phenotype. Renal carcinoma is 
made up of a number of cancers that occur in the kidney, 
each having a different histology, following a different 
clinical course, responding differently to therapy and 
caused by different genes. Here, we highlight that ccRCC 
is fundamentally a metabolic disorder. Understanding the 
mechanisms that lead to altered metabolic pathways in this 
disease should provide the foundation for the development 
of novel targeted therapies and development of novel 
biomarkers.
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MATERIALS AND METHODS

Data mining and gene expression analysis

The data mining strategy for selecting ccRCC 
marker genes was based on the Oncomine v4.4.3 cancer 
microarray platform [14]. Oncomine incorporates more 
than 628 independent microarray datasets, totaling more 
than 62,015 microarray experiments and spanning 41 
cancer types. It unifies a large compendium of other 
published cancer microarray data, including Gene 
Expression Omnibus (GEO) and Stanford Microarray 
Database (SMD) and uniquely provides differential 
expression analyses comparing most major types of cancer 
with their respective normal tissues.
Microarray expression datasets.

 Clear cell Renal Cell Carcinoma was used in the 
<profile search> function in the Oncomine database to find 
the available microarray datasets related to the specific 
cancer type. The analysis type <cancer vs. normal> was 
then applied to filter those microarray datasets exploring 
cancer relative to its non-tumor kidney tissue. Five 
publicly available datasets of gene expression profiles 
were chosen in this study. These were Gumz Renal [41], 
Higgins Renal [7], Jones Renal [8], Lenburg Renal [9] and 
Yusenko Renal [42]. The datasets were carefully selected 
with the criterion of using the same platform (Affymetrix 
HU133A and HU133B) (Table 4).

Gene selection procedure.

 Concept filters in the Oncomine database were used 
to identify the differentially expressed genes in ccRCC vs. 
the normal kidney tissue, using the following parameters: 
p-value=1E-4; Odds Ratio=2.0 and gene rank=top 1%. 
Next, a corrected Q value threshold (Q≤0.05) was used to 
filter and retrieve those DEGs with a high confidence. This 
filtering approach yielded 53 up- and 53 down-regulated 
genes from the “Higgins Renal”, 126 up- and 126 down-
regulated genes from the “Gumz Renal”, 126 up- and 
126 down-regulated genes from the “Jones Renal”, 177 
up- and 177 down-regulated genes from the “Lenburg 
Renal” and 195 up- and 195 down-regulated genes from 
the “Yusenko Renal” datasets, respectively. Then, the co-
DEGs among the five microarray datasets were selected 
as candidate genes for downstream network analysis and 
their expression levels was further validated in ccRCC cell 
lines as well as in a cohort of 10 ccRCC patient samples. 
The median fold change (±SD) value among the datasets 
was calculated and scored (Table S1). 

Pathway analysis of the co-deregulated genes

DEGs were investigated for network interrelation 
by Ingenuity Pathway Analysis, version 7 (IPA; Ingenuity 
Systems, USA). IPA scans the set of input genes to identify 
networks by using Ingenuity Pathways Knowledge Base 
for interactions between identified “Focus Genes.” In 
this study, the DEGs between ccRCC and normal tissue 
samples and hypothetical interacting genes stored in the 
knowledge base in IPA software, were used to generate a 

Table 4: ROC test for each dataset's top 20 DEGs using their extracted MAS5-calculated signal intensity values.
NDUF
A4L2 PLIN2 NNMT ENO2 AHN

AK2 NETO2 CA9 VWF COL23
A1 EHD2 NPHS2 CALB1 RALYL KCNJ1 KNG1 SER

PINA5 SLC12A3 CA10 CLDN6 ATP
6V0A4

G
um

z 
R

en
al

AUC 0.88 0.87 1.00 1.00 N/A 1.00 1.00 0.56 N/A 1.00 1.00 1.00 N/A 1.00 N/A 1.00 1.00 0.97 0.57 0.65

Std. 
Error 0.09 0.09 0.00 0.00 N/A 0.00 0.00 0.14 N/A 0.00 0.00 0.00 N/A 0.00 N/A 0.00 0.00 0.03 0.14 0.13

95% CI 0.71-
1.05

0.69-
1.04

1.00-
1.00

1.00-
1.00 N/A 1.00-

1.00
1.00-
1.00

0.29-
0.83 N/A 1.00-

1.00
1.00-
1.00

1.00-
1.00 N/A 1.00-

1.00 N/A 1.00-
1.00 1.00-1.00 0.90-

1.03
0.29-
0.84

0.39-
0.90

p-value 0.00 0.01 0.00 0.00 N/A 0.00 0.00 0.65 N/A 0.00 0.00 0.00 N/A 0.00 N/A 0.00 0.00 0.00 0.60 0.26

Jo
ne

s R
en

al

AUC 0.80 1.00 1.00 1.00 1.00 0.97 0.98 1.00 N/A 0.95 0.90 0.92 0.86 0.86 N/A 1.00 0.76 0.89 0.78 1.00

Std. 
Error 0.06 0.00 0.01 0.00 0.00 0.03 0.02 0.00 N/A 0.03 0.06 0.06 0.05 0.07 N/A 0.00 0.07 0.04 0.06 0.00

95% CI 0.67-
0.92

1.00-
1.00

0.99-
1.00

1.00-
1.00

1.00-
1.00

0.91-
1.02

0.95-
1.01

1.00-
1.00 N/A 0.89-

0.99
0.79-
1.00

0.80-
1.02

0.76-
0.97

0.73-
0.99 N/A 0.99-

1.00 0.61-0.90 0.81-
0.97

0.65-
0.90

1.00-
1.00

p-value 0.00 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 N/A <0.0001 0.00 <0.0001 0.00 <0.0001

Le
nb

ur
g 

R
en

al

AUC 0.82 0.77 0.83 0.93 0.83 0.87 0.75 0.83 0.80 0.68 0.92 0.90 0.80 0.73 N/A 0.87 0.92 0.53 0.67 0.95

Std. 
Error 0.11 0.16 0.10 0.06 0.10 0.09 0.13 0.10 0.11 0.16 0.07 0.08 0.11 0.14 N/A 0.09 0.07 0.14 0.14 0.05

95% CI 0.59-
1.03

0.44-
1.08

0.63-
1.03

0.81-
1.05

0.63-
1.03

0.68-
1.05

0.50-
0.99

0.63-
1.03

0.58-
1.01

0.36-
0.99

0.78-
1.05

0.74-
1.05

0.58-
1.01

0.45-
1.00 N/A 0.69-

1.04 0.78-1.05 0.25-
0.81

0.39-
0.93

0.83-
1.05

p-value 0.05 0.09 0.04 0.01 0.04 0.02 0.11 0.04 0.06 0.25 0.01 0.01 0.06 0.14 N/A 0.02 0.01 0.83 0.29 0.01

Yu
se

nk
o 

R
en

al

AUC 0.51 0.67 0.89 1.00 1.00 0.86 1.00 0.61 1.00 0.89 1.00 1.00 1.00 1.00 N/A 1.00 0.78 0.85 0.79 1.00

Std. 
Error 0.16 0.27 0.12 0.00 0.00 0.10 0.00 0.16 0.00 0.12 0.00 0.00 0.00 0.00 N/A 0.00 0.11 0.11 0.11 0.00

95% CI 0.19-
0.83

0.13-
1.20

0.64-
1.13

1.00-
1.00

1.00-
1.00

0.66-
1.05

1.00-
1.00

0.29-
0.93

1.00-
1.00

0.64-
1.13

1.00-
1.00

1.00-
1.00

1.00-
1.00

1.00-
1.00 N/A 1.00-

1.00 0.55-0.99 0.63-
1.06

0.58-
1.00

1.00-
1.00

p-value 0.93 0.44 0.07 0.02 0.02 0.01 0.02 0.45 0.02 0.07 0.02 0.02 0.02 0.02 N/A 0.02 0.06 0.02 0.05 0.02
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set of networks with a maximum network size of 35 genes/
proteins. Networks were displayed graphically as genes/
gene products (“nodes”) and the biological relationships 
between the nodes (“edges”). All edges are from canonical 
information stored in the Ingenuity Pathways Knowledge 
Base. Networks of these genes were generated by IPA 
based on their connectivity, each ranked by a score. 
This score indicates the likelihood of the Focus Genes 
in a network from Ingenuity’s knowledge base being 
found together due to random chance. It is based on the 
hypergeometric distribution, calculated with the right-
tailed Fisher’s Exact Test, and corresponds to the negative 
log of this p-value. A score of 1.5 was set as the cutoff for 
identifying gene networks. Furthermore, we used IPA in 
order to identify the top 1% of the deregulated genes and 
the top canonical pathways in which they participate. Also, 
IPA was used to reveal the top molecular and cellular 
functions, as well as the top biological functions of the co-
DEGs. Of these genes, the top 10 deregulated molecules 
were scored.

Gene expression validation in ccRCC cell lines

The human ccRCC cell lines Caki-2 and ACHN 
(kindly provided by Dr Nicoletta Gagliano [43]) were 
used. Cells were cultured in RPMI-1640 medium 
supplemented with 10% fetal bovine serum (FBS), 2 
mmol/l glutamine, antibiotics (100 U/ml penicillin, 0.1 
mg/ml streptomycin) and amphotericin B (2.5 μg/ml). 
Cells were incubated at 37°C at 5% CO2 in 75 cm2 flasks. 
The non-cancerous Human Embryonic Kidney cell line 
(HEK-293) was used as control. Total RNA was isolated 
from cells at 80% confluency using the Total RNA 
isolation NucleoSpin RNA II kit (Macherey-Nagel, Duren) 
and 400 ng were reverse transcribed to cDNA using the 
ProtoScript M-MuLV first-strand cDNA synthesis kit 
(New England Biolabs, Ipswich, MA). Real-time PCRs 
for the validation of the expression profile of the top or 
co-DEGs were performed in triplicate 20μl reactions on 
a ViiA™ 7 Real-Time PCR System using SYBR® Green 
Fast Master Mix (Applied Biosystems). The primer pairs 
were designed to span at least one intron in order to avoid 
amplification of the contaminating genomic DNA along 
with cDNA. Their sequence and the corresponding PCR 
product sizes are listed in Table 5. Relative mRNA levels 
were calculated by the ΔΔCt method [44,45] using ACTB, 
GAPDH and RPL13A as reference genes. The expression 

levels of the most deregulated genes were measured in 
the Caki-2 and ACHN cell lines and compared to the 
corresponding levels in the HEK-293 cells. The correct 
size of the PCR products was confirmed by electrophoresis 
on a 2% agarose gel stained with ethidium bromide. Purity 
of the amplified products was assessed by melting curve 
analysis.

Gene expression validation in a cohort of ccRCC 
patient samples

Tissue samples were obtained from kidney 
specimens from 10 patients with sporadic ccRCC who 
underwent a radical tumour nephrectomy. Immediately 
after resection, the samples were stored at -80°C. 
Histological classification was performed according 
to the WHO and staging according to the UICC-TNM 
classification (2002). Nuclear grade was scored according 
to the Fuhrman classification system [46]. Informed 
consent was obtained from all patients and the study 
protocol was approved by the Ethics Committee of the 
Asklipieio General Hospital, Athens. A matched normal 
kidney biopsy was also collected from each patient. 
Total RNA was isolated from ccRCC and normal kidney 
samples using the TRIzol® Reagent and further purified 
using the RNeasy minikit (Qiagen, Hilden, Germany). 
RNA yield and quality were determined with a NanoDrop 
1000 Spectrophotometer. cDNA synthesis and qRT-PCR 
was performed in triplicate 10 μL reaction volumes on a 
384-plate format of a ViiA™ 7 Real-Time PCR System 
using the Fast SYBR Green Master Mix (Applied 
Biosystems, Foster City, CA), as previously described 
[47-49].

Immunohistochemistry (IHC)

Formalin-fixed and paraffin embedded (FFPE) 
kidney tissue samples from patients with ccRCC were 
retrieved from the archives of the Asklipieio General 
Hospital, Athens. All patients in this study underwent 
a radical tumour nephrectomy. Paraffin sections 
from each specimen were reviewed by a pathologist, 
were histologically classified according to the WHO 
classification and staged according to the UICC-TNM 
classification (2009). Nuclear grade was scored according 
to the Fuhrman classification system [46]. Informed 

Table 5: ROC test for the ccRCC patient cohort using the normalized expression (2^-ΔCt) values.

NR3C1 CAV1 ARHGDIB NETO2 ATP2B4 NNMT ATP6V0A4 KCNJ1 CLDN8 TMPRSS2 KNG1

AUC 0.79 0.84 0.77 0.75 0.75 0.84 0.85 0.79 0.80 0.95 0.92

Std. Error 0.10 0.09 0.10 0.11 0.11 0.09 0.09 0.11 0.10 0.04 0.06

95% CI 0.58-0.99 0.65-1.02 0.55-0.98 0.52-0.97 0.52-0.97 0.65-1.02 0.67-1.02 0.57-1.00 0.58-1.01 0.86-1.03 0.79-1.04

p-value 0.03 0.01 0.04 0.06 0.06 0.01 0.01 0.02 0.02 <0.0001 0.00
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consent was obtained from all patients. Kidney specimens 
were collected between 2007 and 2011. Twenty-two 
ccRCC and 22 normal kidney tissue (parenchyma) 
samples were enrolled for IHC. For ccRCC and normal 
kidney staining experiments, 10μm sections were cut 
and mount on slides coated with suitable tissue adhesive. 
Then sections were de-paraffinized using xylene and re-
hydrated through washes in graded alcohols. Endogenous 
peroxidase was neutralized using 0.5% v/v hydrogen 
peroxide/methanol for 10 minutes. Slides were washed 
with water. Retrieval was carried out using 0.01M citrate 
retrieval solution (pH 6.0). Sections were subsequently 
washed with TBS and blocked for 10 minutes using 
3% BSA in PBS. Sections were incubated with primary 
polyclonal antibodies anti-NNMT (PA5-11143) and anti-
NR3C1 (PA1-511A) (NNMT, 1:50 dilution; NR3C1, 
1:200 dilution) overnight at 4°C. Slides were then washed 
and incubated with DAKO REAL EnVision, HRP Rabbit/
Mouse (ENV). Subsequently, slides were incubated with 
3, 3’-diaminobenzidine (DAB) washed thoroughly in 
running tap water and counterstained with hematoxylin 
before being dehydrated and mounted. Haematoxylin 
and eosin (H&E) staining and IHC for several routinely 
used ccRCC-specific markers such as AE1/AE3 keratins, 
Vimentin, Ki67, p53 and S-100 was also performed for 
all sections.

Diagnostic performance of the top 20 deregulated 
genes

We performed a Receiver Operating Characteristic 
(ROC) curves analysis to evaluate the diagnostic 
performance of the top 20 deregulated genes in each 
microarray dataset. The MAS5-calculated Signal intensity 
values extracted from each dataset were used for the 
analysis. Sensitivity and specificity scores defining the 
area under the curve (AUC) were used for each candidate 
gene in order to discriminate between those individuals 
with ccRCC and those without the disease [50]. ROC 
curves were constructed using GraphPad Prism v.5 
software (San Diego, CA).

Further Enrichment Analysis

The DEGs were further explored for the pathways 
in which they participate, using the WebGestalt web-tool 
(http://bioinfo.vanderbilt.edu/webgestalt), as previously 
reported [44,51]. Specifically, we applied Gene Ontology 
(GO), KEGG pathways, Wikipathways and Pathway 
Commons Analysis. Since the knowledge of common 
transcriptional regulatory networks could potentially lead 
to the key treatment for ccRCC, our attention was also 
focused on the transcription factors (TFs) that regulate the 
co-DEGs in ccRCC. We performed Transcription Factor 
Target Analysis. The hypergeometric test, with Bonferroni 

correction was used for enrichment evaluation analysis. 
The R function adjP was used in order to adjust the 
nominal p values of the large number of categories at the 
same time. The significance level for the adjusted p-value 
was set at 0.01 and the number of minimum genes for a 
category was set at 2.

Statistical Analysis

Differences in gene expression levels between 
ccRCC and normal kidney tissues were explored using 
the paired t-test. Numerical values were expressed as the 
mean±standard deviation (SD). Statistical significance was 
set at the 95% confidence level (p<0.05). The statistical 
package GraphPad Prism v.5 (La Jolla, CA) was used for 
calculations.
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